CONTENTS

FORWARDiii
EXECUTIVE SUMMARY
FIGURESx
TABLESxii
ABBREVIATIONS, ACRONYMS, AND SYMBOLS xiii
SECTION 1.0 SUMMARY OF THE DESIGN METHODOLOGY
1.1 OBJECTIVES AND DESIGN STRUCTURE
1.2 PRELIMINARY ASSESSMENT TO DETERMINE SUITABILITY OF A SITE FOR
PERMEABLE BARRIER APPLICATIONS 3
1.3 SITE CHARACTERIZATION TO SUPPORT PERMEABLE BARRIER DESIGN
1.4 REACTIVE MEDIA SELECTION
1.5 TREATABILITY TESTING TO GENERATE CONTAMINANT- AND SITE-
SPECIFIC DESIGN DATA
1.6 MODELING TO SUPPORT BARRIER DESIGN AND DEVELOP MONITORING
PLAN
1.7 EMPLACEMENT OF THE BARRIER
1.8 MONITORING THE PERFORMANCE OF THE BARRIER
1.9 PERMEABLE BARRIER ECONOMICS 9
-,
SECTION 2.0 TECHNOLOGY BACKGROUND AND STATUS11
2.1 PROBLEM DESCRIPTION
2.2 TECHNOLOGY DESCRIPTION 12
2.3 MECHANISM OF ENHANCED ABIOTIC DEGRADATION WITH METALS
2.4 POTENTIAL BIOLOGICALLY MEDIATED REACTIONS IN THE REACTIVE
CELL
2.5 CURRENT STATUS OF PERMEABLE BARRIER FIELD APPLICATIONS
2.6 EFFORTS OF GOVERNMENT AGENCIES TO PROVIDE REGULATORY
GUIDANCE FOR THE USE OF PERMEABLE BARRIERS
SECTION 3.0 SITE CHARACTERIZATION DATA
3.1 GROUNDWATER FLOW SYSTEM CHARACTERISTICS
3.1.1 Site Background Information
3.1.2 Hydrostratigraphic Framework
3.1.3 Hydrologic Parameter Estimation
3.2 ORGANIC COMPOSITION OF THE GROUNDWATER24
3.2.1 Organic Contaminant Spatial Distribution
4.2.2 Groundwater Sampling and Analysis
3.2.2 Groundwater Sampling for Volatile Organic Compounds (VOCs)
3.2.3 Analytical Methods for VOCs
3.3 INORGANIC COMPOSITION OF THE GROUNDWATER
3.3.1 Sampling and Analysis of Field Parameters 26
3.3.2 Sampling and Analysis for Inorganic Chemical Parameters
CECTION 40 DEACTIVE MEDIA CELECTION 20
SECTION 4.0 REACTIVE MEDIA SELECTION
4.1 TITES OF REACTIVE MEDIA AVAILABLE 28

CONTENTS (Continued)

4.1.1.1 Granular Iron	
4.1.1.2 Other Zero-Valent Metals	29
4.1.2 Granular Iron with an Amendment	30
4.1.3 Bimetallic Media	
4.1.4 Other Innovative Reactive Media	31
4.1.4.1 Cercona [™] Iron Foam	. 31.
4.1.4.2 Colloidal Iron	31
4.1.4.3 Ferrous Iron-Containing Compounds	31.
4.1.4.4 Reduction of Aquifer Materials by Dithionite	. 32.
4.2 SCREENING AND SELECTION OF REACTIVE MEDIA	. 32
SECTION 5.0 TREATABILITY TESTING	. 34
5.1 BATCH TESTING	
5.2 COLUMN TESTING	
5.2.1 Design and Implementation of Column Tests	
5.2.2 Interpreting Column Data	
5.2.3 Safety Factors	
5.2.4 Determining Flowthrough Thickness of the Reactive Cell	
5.3 ACCELERATED AND LONG-TERM COLUMN TESTING	
5.4 ESTIMATING THE PERMEABILITY OF THE SELECTED REACTIVE MEDIUM	
3.1 ESTEVITING THE TERMEMBERT OF THE SEELCTES REMOTIVE MEDICAL	13
SECTION 6.0 MODELING TO SUPPORT THE PERMEABLE BARRIER DESIGN	.45
6.1 HYDROGEOLOGIC MODELING APPROACH FOR DESIGN AND MONITORING	
OF PERMEABLE BARRIERS	46
6.1.1 Modeling Approach for Relatively Homogeneous Aquifers	
6.1.2 Modeling Approach for Heterogeneous Aquifers	
6.1.3 Modeling Different Permeable Barrier Configurations and Dimensions	
6.2 GEOCHEMICAL EVALUATION FOR PERMEABLE BARRIER DESIGN AND	
PERFORMANCE PERFORMANCE	54
I LKI OKWANCE	J 7T.
SECTION 7.0 EMPLACEMENT TECHNIQUES FOR PERMEABLE BARRIER INSTALLATION	56
7.1 COMMERCIALLY AVAILABLE TECHNIQUES FOR REACTIVE CELL	
EMPLACEMENT	56.
7.1.1 Conventional Trench Excavation	5.7.
7.1.1.1 Backhoes	. 59.
7.1.1.2 Clamshells	
7.1.2 Caisson-Based Emplacement	61
7.1.3 Mandrel-Based Emplacement	
7.1.4 Continuous Trenching	
7.2 COMMERCIALLY AVAILABLE TECHNIQUES FOR FUNNEL WALL	
EMPLACEMENT	64
7.2.1 Steel Sheet Piles.	
7.2.2 Slurry Walls	
7.2.2.1 Soil-Bentonite Slurry Wall	
7.2.2.2 Cement-Bentonite Slurry Wall	
7.2.2.2 Concrete Slurry Wall	68

CONTENTS

(Continued)

7.2.2.4 Composite Barrier Slurry Wall	68
7.3 INNOVATIVE EMPLACEMENT TECHNIQUES	70
7.3.1 Jetting	7.0
7.3.2 Emplaced Hydraulic Fracturing	7.2
7.3.3 Deep Soil Mixing	72
7.4 CONSTRUCTION QUALITY CONTROL (CQC)	74
7.5 HEALTH AND SAFETY ISSUES	
7.5.1 Waste Minimization	7.4
SECTION 8.0 MONITORING THE PERFORMANCE OF A PERMEABLE BARRIER	
8.1 ADEQUACY OF PLUME CAPTURE AND TREATMENT	
8.1.1 Monitoring for Potential Breakthrough or Bypass of Contaminants	
8.1.2 Sampling and Analysis for Contaminants and Byproducts	
8.1.3 Monitoring Downgradient Water Quality	
8.2 DETERMINING IF THE BARRIER MEETS DESIGN SPECIFICATIONS	_
8.2.1 Estimating Residence Time Distribution in the Reactive Cell	
8.2.2 Estimating the Hydraulic Capture Zone Size	
8.3 ESTIMATING THE LONGEVITY OF THE BARRIER	85
SECTION 9.0 PERMEABLE BARRIER ECONOMICS	
9.1 CAPITAL COST CONSIDERATIONS	
9.2 OPERATING AND MAINTENANCE (O&M) COST CONSIDERATIONS	
9.3 COST-BENEFIT EVALUATION	
9.4 COMPUTERIZED COST MODELS	89
SECTION 10.0 REFERENCES	93
APPENDIX A: ADDITIONAL SITE CHARACTERIZATION AND MONITORING ISSUES	A-1
APPENDIX B: SUPPORTING INFORMATION FOR HYDROGEOLOGIC MODELING	B-1
APPENDIX C: SUPPORTING INFORMATION FOR GEOCHEMICAL MODELING	C-1
APPENDIX D: CONSTRUCTION QUALITY CONTROL	D-1
APPENDIX E: SELECTED SITE SUMMARIES OF PREVIOUS PERMEABLE BARRIER	
APPLICATIONS FOR CHLORINATED SOLVENT PLUMES	E-1
EICLIDES	
FIGURES	
Figure 1-1. Steps in the Design of a Permeable Barrier System	
Figure 1-2. Decision Chart for Permeable Barrier Design Activities	
Figure 2-1. Schematic Illustrations of Some Permeable Barrier Configurations	1.2
Figure 2-2. (a) Funnel-and-Gate System with Straight Funnel. (b) Other Possible Funnel-and-	
Gate System Configurations	
Figure 2-3. Schematic of Proposed Degradation Process for TCE	
Figure 5-1. Typical Column Setup	
Figure 5-2. Photograph of Column Setup	
Figure 5-3. Column Concentration Profile of TCE and One of Its Byproducts, cis-DCE	39

CONTENTS

(Continued)

Figure	5-4.	Psuedo First-Order Degradation Rate of TCE	.39
Figure	5-5.	Example of a Column Profile of VOC Concentrations	40
Figure	5-6.	Correlation of TCE Degradation Rates with Temperature	42
Figure	6-1.	Simulated Particle Pathlines Showing Capture Zone	47
Figure	6-2.	MFA Funnel-and-Gate Backward Particle Tracking Showing the Effect of	
			49
Figure	6-3.	Simulated Capture Zone for a Continuous Barrier Scenario Showing Flowpaths for	
		180 Days	50
Figure	6-4.	Capture Zone for a Permeable Barrier with Two Caissons and Funnel Walls.	
		Flowpaths for 5,000 Days Shown	52
			58
Figure	7-2.	Emplacement of Reactive Iron Media (Suspended Bag) and Pea Gravel (Front-End	
		Loader) into Divided Sections of a Permeable Cell	59
Figure	7-3.	Conventional Backhoe Excavation of a Slurry Cutoff Wall	60
		Trench Excavation Using a Clamshell and Backhoe	.60
Figure	7-5.	Emplaced Caisson Being Augered Out, Somersworth Sanitary Landfill, New	
		Hampshire	61
		Continuous Trencher in Operation	63
Figure	7-7.	Types of Slurry Wall Emplacement. (a) Keyed-In Emplacement and (b) Hanging	
		Wall Emplacement	
		Sheet Piles Emplaced Using a Vibrating Hammer	
		Waterloo Barrier Sheet Piles	.66
Figure	7-10.	Cross-Section of a Soil-Bentonite Slurry Trench, Showing Excavation and	
		Backfilling Operations	.6.7
Figure	7-11.	Composite Barrier Design. (a) Monitoring Wall Cross Section and (b) Section of	
		HDPE Liner Envelope	69
Figure	7-12.	Diagram of (a) Plan View of a Grouted Impermeable Barrier, (b) Geometric Layout	
		of Grouted Injection Holes, and (c) Vertical Thin Diaphragm Walls	
_		Deep Soil Mixing	
		Various Monitoring Well Configurations for Evaluating Performance of the Barrier	77
Figure	8-2.	Concentrations of Chlorinated Compounds Along Center Line in the Flowpath of	
		Existing Permeable Barrier	
_		Installation of Monitoring Wells in the Reactive Cell and Pea Gravel	
-		Possible Monitoring Well Configurations to Evaluate Hydraulic Capture Zone	
Figure	9-1.	RACER Version 3.2 Process Flowchart	91
		TADIEC	
		TABLES	
Table	1-1.	Compounds Tested and Half-Lives Normalized to 1 m ² Iron Surface per mL Solution	5
		Properties of Common Chlorinated Organic Compounds	
		Current Status of Permeable Barrier Applications for Chlorinated Solvent Sites	
		Requirements for Field Parameters and Inorganic Analytes	
		Summary Table of Various Techniques for Barrier Emplacement	
		÷	

ABBREVIATIONS, ACRONYMS, AND SYMBOLS

2-D two-dimensional3-D three-dimensional

AFB Air Force Base

AL/EQ Armstrong Laboratory Environics Directorate

BET Brunauer-Emmett-Teller Adsorption Isotherm Equation

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, xylenes

CMC carboxymethyl cellulose CMS Corrective Measures Study

CP cone penetrometer
CPT cone penetrometer test
CQC construction quality control

DCE dichloroethene

DNAPL dense, nonaqueous-phase liquid

DO dissolved oxygen

DOC dissolved organic carbon

EDS energy dispersive x-ray spectroscopy

Eh redox potential

EPA Environmental Protection Agency EQL estimated quantitation limit ETI EnviroMetal Technologies, Inc.

FGDM Funnel-and-Gate Design Model

FID flame ionization detector

GC gas chromatography

GC-FID gas chromatograph-flame ionization detector

GE General Electric GX gum xanthan

HDPE high-density polyethylene HFB Horizontal Flow Barrier HSU hydrostratigraphic units

IAP ion activity product IC ion chromatography

ICP inductively coupled plasma

ITRC Interstate Technology and Regulatory Cooperation

K hydraulic conductivity

 $K_{aquifer}$ aquifer hydraulic conductivity K_{een} reactive cell hydraulic conductivity

MCL maximum contaminant level MFA Moffett Federal Airfield

MS matrix spike

MSDS Material Safety Data Sheet

NERL National Exposure Research Laboratory NFESC Naval Facilities Engineering Service Center

NPV net present value

NRC National Research Council

O&M operating and maintenance ORC oxygen-releasing compound

OSHA Occupational Safety and Health Administration

PBWG Permeable Barriers Working Group

PCB polychlorinated biphenyl

PCE perchloroethylene

PPE personal protective equipment PRP potentially responsible party

QA quality assurance

QAPP Quality Assurance Project Plan

QC quality control

RCRA Resource Conservation and Recovery Act

RFI RCRA Facility Investigation RFI/CMS RFI/Corrective Measures Study

RI/FS Remedial Investigation/Feasibility Study

ROD Record of Decision

RTDF Remediation Technologies Development Forum

SEM scanning electron microscopy

SI saturation index

SITE Superfund Innovative Technology Evaluation

SPH smooth particle hydrodynamics

T temperature
TCA trichloroethane
TCE trichloroethylene
TDS total dissolved solids
TOC total organic carbon
TSS total suspended solids

USCG United States Coast Guard U.S. DOE U.S. Department of Energy

U.S. EPA U.S. Environmental Protection Agency

USGS United States Geological Survey

UST underground storage tank

VC

vinyl chloride volatile organic compound vinyl polymer VOC

VP

wave dispersive spectroscopy WDS

x-ray diffraction XRD